Multiwavelength Campaign Observations of a Young Solar-type Star, EK Draconis. I. Discovery of Prominence Eruptions Associated with Superflares

Author:

Namekata KosukeORCID,Airapetian Vladimir S.ORCID,Petit PascalORCID,Maehara HiroyukiORCID,Ikuta KaiORCID,Inoue ShunORCID,Notsu YutaORCID,Paudel Rishi R.ORCID,Arzoumanian Zaven,Avramova-Boncheva Antoaneta A.ORCID,Gendreau KeithORCID,Jeffers Sandra V.ORCID,Marsden StephenORCID,Morin JulienORCID,Neiner CoralieORCID,Vidotto Aline A.ORCID,Shibata KazunariORCID

Abstract

Abstract Young solar-type stars frequently produce superflares, serving as a unique window into the young Sun-Earth environments. Large solar flares are closely linked to coronal mass ejections (CMEs) associated with filament/prominence eruptions, but observational evidence for stellar superflares remains scarce. Here, we present a 12-day, multiwavelength campaign observation of young solar-type star EK Draconis (G1.5V, 50–120 Myr age) utilizing the Transiting Exoplanet Survey Satellite, the Neutron star Interior Composition ExploreR, and the Seimei telescope. The star has previously exhibited blueshifted Hα absorptions as evidence for a filament eruption associated with a superflare. Our simultaneous optical and X-ray observations identified three superflares of 1.5 × 1033–1.2 × 1034 erg. We report the first discovery of two prominence eruptions on a solar-type star, observed as blueshifted Hα emissions at speeds of 690 and 430 km s−1 and masses of 1.1 × 1019 and 3.2 × 1017 g, respectively. The faster, massive event shows a candidate of post-flare X-ray dimming with the amplitude of up to ∼10%. Several observational aspects consistently point to the occurrence of a fast CME associated with this event. The comparative analysis of the estimated length scales of flare loops, prominences, possible dimming region, and starspots provides the overall picture of the eruptive phenomena. Furthermore, the energy partition of the observed superflares in the optical and X-ray bands is consistent with flares from the Sun, M-dwarfs, and close binaries, yielding the unified empirical relations. These discoveries provide profound implications of the impact of these eruptive events on early Venus, Earth, and Mars and young exoplanets.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3