A critical assessment of turbulence models for 1D core-collapse supernova simulations

Author:

Müller Bernhard1ORCID

Affiliation:

1. Monash Centre for Astrophysics, School of Physics and Astronomy, 11 College Walk, Monash University, Clayton VIC 3800, Australia

Abstract

Abstract It has recently been proposed that global or local turbulence models can be used to simulate core-collapse supernova explosions in spherical symmetry (1D) more consistently than with traditional approaches for parametrized 1D models. However, a closer analysis of the proposed schemes reveals important consistency problems. Most notably, they systematically violate energy conservation as they do not balance buoyant energy generation with terms that reduce potential energy, thus failing to account for the physical source of energy that buoyant convection feeds on. We also point out other non-trivial consistency requirements for viable turbulence models. The Kuhfuss model from the 1980s proves more consistent than the newly proposed approaches for supernovae, but still cannot account naturally for all the relevant physics for predicting explosion properties. We perform numerical simulations for a $20 \, \mathrm{M}_\odot$ progenitor to further illustrate problems of 1D turbulence models. If the buoyant driving term is formulated in a conservative manner, the explosion energy of ${\sim }2\times 10^{51}\, \mathrm{erg}$ for the corresponding non-conservative turbulence model is reduced to $\lt 10^{48} \, \mathrm{erg}$ even though the shock expands continuously. This demonstrates that the conservation problem cannot be ignored. Although plausible energies can be reached using an energy-conserving model when turbulent viscosity is included, it is doubtful whether the energy budget of the explosion is regulated by the same mechanism as in multidimensional models. We conclude that 1D turbulence models based on a spherical Reynolds decomposition cannot provide a more consistent approach to supernova explosion and remnant properties than other phenomenological approaches before some fundamental problems are addressed.

Funder

Australian Research Council

National Computational Infrastructure

Government of Western Australia

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3