Affiliation:
1. School of Physics and Astronomy , 10 College Walk, Monash University, Clayton VIC 3800 , Australia
2. Queen’s University Belfast, Astrophysics Research Centre , Belfast, Northern Ireland BT7 1NN , UK
Abstract
ABSTRACT
Spectroscopy is an important tool for providing insights into the structure of core-collapse supernova explosions. We use the Monte Carlo radiative transfer code artis to compute synthetic spectra and light curves based on a two-dimensional explosion model of an ultra-stripped supernova. These calculations are designed both to identify observable fingerprints of ultra-stripped supernovae and as a proof of principle for using synthetic spectroscopy to constrain the nature of stripped-envelope supernovae more broadly. We predict characteristic spectral and photometric features for our ultra-stripped explosion model, and find that these do not match observed ultra-stripped supernova candidates like SN 2005ek. With a peak bolometric luminosity of $6.8\times 10^{41}\, \mathrm{erg}\, \mathrm{s}^{-1}$, a peak magnitude of $-15.9\, \mathrm{mag}$ in R band, and Δm15,R = 3.50, the model is even fainter and evolves even faster than SN 2005ek as the closest possible analogue in photometric properties. The predicted spectra are extremely unusual. The most prominent features are Mg ii lines at $2 {,}800\, {\mathring{\rm A}}$ and $4 {,}500\, {\mathring{\rm A}}$ and the infrared Ca triplet at late times. The Mg lines are sensitive to the multidimensional structure of the model and are viewing-angle dependent. They disappear due to line blanketing by iron group elements in a spherically averaged model with additional microscopic mixing. In future studies, multi-D radiative transfer calculations need to be applied to a broader range of models to elucidate the nature of observed Type Ib/c supernovae.
Funder
Science and Technology Facilities Council
Australian Research Council
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献