Light Curves of Type IIP Supernovae from Neutrino-driven Explosions of Red Supergiants Obtained by a Semianalytic Approach

Author:

Zha ShuaiORCID,Müller BernhardORCID,Weir Amy,Heger AlexanderORCID

Abstract

Abstract Type IIP supernovae (SNe IIP) mark the explosive death of red supergiants (RSGs), evolved massive stars with an extended hydrogen envelope. They are the most common supernova type and allow for the benchmarking of supernova explosion models by statistical comparison to observed population properties rather than by comparing individual models and events. We construct a large synthetic set of SNe IIP light curves (LCs) using the radiation hydrodynamics code SNEC and explosion energies and nickel masses obtained from an efficient semianalytic model for two different sets of stellar progenitor models. By direct comparison, we demonstrate that the semianalytic model yields very similar predictions as alternative phenomenological explosion models based on 1D simulations. We find systematic differences of a factor of ∼2 in plateau luminosities between the two progenitor sets due to different stellar radii, which highlights the importance of the RSG envelope structure as a major uncertainty in interpreting the LCs of SNe IIP. A comparison to a volume-limited sample of observed SNe IIP shows decent agreement in plateau luminosity, plateau duration, and nickel mass for at least one of the synthetic LC sets. The models, however, do not produce sufficient events with very small nickel mass M Ni < 0.01 M and predict an anticorrelation between plateau luminosity and plateau duration that is not present in the observed sample, a result that warrants further study. Our results suggest that a better understanding of RSG stellar structure is no less important for reliably explaining the LCs of SNe IIP than the explosion physics.

Funder

China Postdoctoral Science Foundation

Australian Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3