Explodability fluctuations of massive stellar cores enable asymmetric compact object mergers such as GW190814

Author:

Antoniadis JohnORCID,Aguilera-Dena David R.,Vigna-Gómez Alejandro,Kramer Michael,Langer Norbert,Müller Bernhard,Tauris Thomas M.,Wang Chen,Xu Xiao-Tian

Abstract

The first three observing runs with Advanced LIGO and Virgo have resulted in the detection of binary black hole (BBH) mergers with highly unequal mass components, which are difficult to reconcile with standard formation paradigms. The most representative of these is GW190814, a highly asymmetric merger between a 23 M black hole (BH) and a 2.6 M compact object. Here, we explore recent results, suggesting that a sizable fraction of stars with pre-collapse carbon-oxygen core masses above 10 M, and extending up to at least 30 M, may produce objects inside the so-called lower mass gap that bridges the division between massive pulsars and BHs in Galactic X-ray binaries. We demonstrate that such an explosion landscape would naturally cause a fraction of massive binaries to produce GW190814-like systems instead of symmetric-mass BBHs. We present examples of specific evolutionary channels leading to the formation of GW190814 and GW200210, a 24 + 2.8 M merger discovered during the O3b observing run. We estimate the merger-rate density of these events in our scenario to be 𝒪(5%) of the total BBH merger rate. Finally, we discuss the broader implications of this formation channel for compact object populations, and its possible relevance to less asymmetric merger events such as GW200105 and GW200115.

Funder

Hellenic Foundation for Research and Innovation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3