Cosmic rays from massive star clusters: a close look at Westerlund 1

Author:

Bhadra Sourav12ORCID,Gupta Siddhartha3ORCID,Nath Biman B1ORCID,Sharma Prateek2ORCID

Affiliation:

1. Raman Research Institute, Sadashiva Nagar, Bangalore 560080, India

2. Joint Astronomy Programme, Department of Physics, Indian Institute of Science, Bangalore 560012, India

3. Department of Astronomy and Astrophysics, University of Chicago, IL 60637, USA

Abstract

ABSTRACT We study the effect of cosmic ray (CR) acceleration in the massive compact star cluster Westerlund 1 in light of its recent detection in γ-rays. Recent observations reveal a 1/r radial distribution of the CR energy density. Here, we theoretically investigate whether or not this profile can help to distinguish between (1) continuous CR acceleration in the star cluster stellar wind-driven shocks and (2) discrete CR acceleration in multiple supernovae (SNe) shocks – which are often debated in the literature. Using idealized two-fluid simulations and exploring different acceleration sites and diffusion coefficients, we obtain the CR energy density profile and luminosity to find the best match for the γ-ray observations. We find that the inferred CR energy density profiles from observations of γ-ray luminosity and mass can be much different from the true radial profile. CR acceleration at either the cluster core region or the wind termination shock can explain the observations, if the diffusion coefficient is κcr ∼ 1027 cm2 s−1 and a fraction of ${\approx}10-20{{\ \rm per\ cent}}$ of the shock power/post-shock pressure is deposited into the CR component. We also study the possibility of discrete SNe explosions being responsible for CR acceleration and find that with an injection rate of 1 SN in every ∼0.03 Myr, one can explain the observed γ-ray profile. This multiple SN scenario is consistent with X-ray observations only if the thermal conductivity is close to the Spitzer value.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3