Understanding the TeV γ-ray emission surrounding the young massive star cluster Westerlund 1

Author:

Härer Lucia K.ORCID,Reville Brian,Hinton Jim,Mohrmann Lars,Vieu Thibault

Abstract

Context. Young massive star clusters (YMCs) have increasingly become the focus of discussions on the origin of galactic cosmic rays (CRs). The proposition that CRs are accelerated inside superbubbles (SBs) blown by the strong winds of these clusters avoids issues faced by the standard paradigm of acceleration at supernova remnant shocks. Aims. We provide an interpretation of the latest TeV γ-ray observations of the region around the YMC Westerlund 1 taken with the High Energy Stereoscopic System (H.E.S.S.) in terms of diffusive shock acceleration at the cluster wind termination shock, taking the spectrum and morphology of the emission into account. As Westerlund 1 is a prototypical example of a YMC, this study is relevant to the general question about the role of YMCs for the Galactic CR population. Methods. We generated model γ-ray spectra, characterised particle propagation inside the SB based on the advection, diffusion, and cooling timescales, and constrained key parameters of the system. We considered hadronic emission from proton-proton interaction and subsequent pion decay and leptonic emission from inverse Compton scattering on all relevant photon fields, including the cosmic microwave background, diffuse and dust-scattered starlight, and the photon field of Westerlund 1 itself. The effect of the magnetic field on cooling and propagation is discussed. Klein-Nishina effects are found to be important in determining the spectral evolution of the electron population. Results. A leptonic origin of the bulk of the observed γ-rays is preferable. The model is energetically plausible, consistent with the presence of a strong shock, and allows for the observed energy-independent morphology. The hadronic model faces two main issues: confinement of particles to the emission region, and an unrealistic energy requirement.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3