Classification of core-collapse supernova explosions with learned dictionaries

Author:

Saiz-Pérez Ainara1,Torres-Forné Alejandro1,Font José A12

Affiliation:

1. Departamento de Astronomía y Astrofísica, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (València), Spain

2. Observatori Astronòmic, Universitat de València, Catedrático José Beltrán 2, E-46980 Paterna (València), Spain

Abstract

ABSTRACTCore-collapse supernovae (CCSNs) are a prime source of gravitational waves. Estimations of their typical frequencies make them perfect targets for the current network of advanced, ground-based detectors. A successful detection could potentially reveal the underlying explosion mechanism through the analysis of the waveform. This has been illustrated using the Supernova Model Evidence Extractor (SMEE), an algorithm based on principal component analysis and Bayesian model selection. Here, we present a complementary approach to SMEE based on (supervised) dictionary-learning and show that it is able to reconstruct and classify CCSN signals according to their morphology. Our waveform signals are obtained from (a) two publicly available catalogues built from numerical simulations of neutrino-driven (Mur) and magneto-rotational (Dim) CCSN explosions and (b) from a third ‘mock’ catalogue of simulated sine-Gaussian (SG) waveforms. All of these signals are injected into coloured Gaussian noise to simulate the background noise of Advanced LIGO in its broad-band configuration and scaled to a freely specifiable signal-to-noise ratio (SNR). We show that our approach correctly classifies signals from all three dictionaries. In particular, for SNR = 15–20, we obtain perfect matches for both Dim and SG signals and about 85 per cent true classifications for Mur signals. These results are comparable to those reported by SMEE for the same CCSN signals when those are injected in only one LIGO detector. We discuss the main limitations of our approach as well as possible improvements.

Funder

Spanish Agencia Estatal de Investigación

Generalitat Valenciana

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3