Probing nuclear physics with supernova gravitational waves and machine learning

Author:

Mitra A1234,Orel D5,Abylkairov Y S6ORCID,Shukirgaliyev B6789ORCID,Abdikamalov E26ORCID

Affiliation:

1. Center for Astrophysical Surveys, National Center for Supercomputing Applications, University of Illinois Urbana-Champaign , Urbana, IL, 61801 , USA

2. Department of Physics, Nazarbayev University , 53 Kabanbay Batyr ave, 010000 Astana , Kazakhstan

3. Department of Astronomy, University of Illinois Urbana-Champaign , Urbana, IL 61801 , USA

4. School of Materials Science and Green Technologies, Kazakh-British Technical University , 59 Tole Bi Street, 050000 Almaty , Kazakhstan

5. Department of Computer Science, Nazarbayev University , 53 Kabanbay Batyr ave, 010000 Astana , Kazakhstan

6. Energetic Cosmos Laboratory, Nazarbayev University , 53 Kabanbay Batyr ave, 010000 Astana , Kazakhstan

7. Heriot-Watt International Faculty, Zhubanov University , 263 Zhubanov brothers str, 030000 Aktobe , Kazakhstan

8. Fesenkov Astrophysical Institute , 23 Observatory str, 050020 Almaty , Kazakhstan

9. Department of Computation and Data Science, Astana IT University , 55/11 Mangilik El ave, 010000 Astana , Kazakhstan

Abstract

ABSTRACT Core-collapse supernovae (CCSNe) are sources of powerful gravitational waves (GWs). We assess the possibility of extracting information about the equation of state (EOS) of high density matter from the GW signal. We use the bounce and early post-bounce signals of rapidly rotating supernovae. A large set of GW signals is generated using general relativistic hydrodynamics simulations for various EOS models. The uncertainty in the electron capture rate is parametrized by generating signals for six different models. To classify EOSs based on the GW data, we train a convolutional neural network (CNN) model. Even with the uncertainty in the electron capture rates, we find that the CNN models can classify the EOSs with an average accuracy of about 87 per cent for a set of four distinct EOS models.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Nazarbayev University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3