Transition from multipolar to dipolar dynamos in stratified systems

Author:

Zaire B12ORCID,Jouve L1,Gastine T3ORCID,Donati J-F1ORCID,Morin J4ORCID,Landin N5,Folsom C P6ORCID

Affiliation:

1. IRAP, Université de Toulouse, CNRS/UMR 5277, CNES, UPS , 14 avenue E. Belin, F-31400 Toulouse, France

2. Universidade Federal de Minas Gerais , Belo Horizonte, MG 31270-901, Brazil

3. Université de Paris, Institut de Physique du Globe de Paris, UMR 7154 CNRS , 1 rue Jussieu, F-75005 Paris, France

4. LUPM, Université de Montpellier, CNRS , Place Eugène Bataillon, F-34095 Montpellier, France

5. Universidade Federal de Viçosa, Campus UFV Florestal , Florestal, MG 35690-000, Brazil

6. Tartu Observatory, University of Tartu , Observatooriumi 1, Tõravere, 61602 Tartumaa, Estonia

Abstract

ABSTRACT Observations of surface magnetic fields of cool stars reveal a large diversity of configurations. Although there is now a consensus that these fields are generated through dynamo processes occurring within the convective zone, the physical mechanism driving such a variety of field topologies is still debated. This paper discusses the possible origins of dipole- and multipole-dominated morphologies using three-dimensional numerical simulations of stratified systems where the magnetic feedback on the fluid motion is significant. Our main result is that dipolar solutions are found at Rossby numbers up to 0.4 in strongly stratified simulations, where previous works suggested that only multipolar fields should exist. We argue that these simulations are reminiscent of the outlier stars observed at Rossby numbers larger than 0.1, whose large-scale magnetic field is dominated by their axisymmetric poloidal component. As suggested in previous Boussinesq calculations, the relative importance of inertial over Lorentz forces is again controlling the dipolar to multipolar transition. Alternatively, we find that the ratio of kinetic to magnetic energies can equally well capture the transition in the field morphology. We test the ability of this new proxy to predict the magnetic morphology of a few M dwarf stars whose internal structure matches that of our simulations and for which homogeneous magnetic field characterization is available. Finally, the magnitude of the differential rotation obtained in our simulations is compared to actual measurements reported in the literature for M dwarfs. In our simulations, we find a clear relationship between antisolar differential rotation and the emergence of dipolar fields.

Funder

European Research Council

Horizon 2020 Framework Programme

Institut Universitaire de France

CNPq

CAPES

FAPEMIG

GENCI

CINES

CALMIP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3