Self-similarity of the dipole–multipole transition in rapidly rotating dynamos

Author:

Majumder DebarshiORCID,Sreenivasan BinodORCID,Maurya Gaurav

Abstract

The dipole–multipole transition in rapidly rotating dynamos is investigated through the analysis of forced magnetohydrodynamic waves in an unstably stratified fluid. The focus of this study is on the inertia-free limit applicable to planetary cores, where the Rossby number is small not only on the core depth but also on the length scale of columnar convection. By progressively increasing the buoyant forcing in a linear magnetoconvection model, the slow magnetic–Archimedean–Coriolis (MAC) waves are significantly attenuated so that their kinetic helicity decreases to zero; the fast MAC wave helicity, on the other hand, is practically unaffected. In turn, polarity reversals in low-inertia spherical dynamos are shown to occur when the slow MAC waves disappear under strong forcing. Two dynamically similar regimes are identified – the suppression of slow waves in a strongly forced dynamo and the excitation of slow waves in a moderately forced dynamo starting from a small seed field. While the former regime results in polarity reversals, the latter regime produces the axial dipole from a chaotic multipolar state. For either polarity transition, a local Rayleigh number based on the mean wavenumber of the energy-containing scales bears the same linear relationship with the square of the peak magnetic field measured at the transition. The self-similarity of the dipole–multipole transition can place a constraint on the Rayleigh number for polarity reversals in the Earth.

Funder

Ministry of Education, India

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3