Direct evidence of a full dipole flip during the magnetic cycle of a sun-like star

Author:

Boro Saikia S.,Lueftinger T.,Jeffers S. V.,Folsom C. P.,See V.,Petit P.,Marsden S. C.,Vidotto A. A.,Morin J.,Reiners A.,Guedel M.,

Abstract

Context.The behaviour of the large-scale dipolar field, during a star’s magnetic cycle, can provide valuable insight into the stellar dynamo and associated magnetic field manifestations such as stellar winds.Aims.We investigate the temporal evolution of the dipolar field of the K dwarf 61 Cyg A using spectropolarimetric observations covering nearly one magnetic cycle equivalent to two chromospheric activity cycles.Methods.The large-scale magnetic field geometry is reconstructed using Zeeman Doppler imaging, a tomographic inversion technique. Additionally, the chromospheric activity is also monitored.Results.The observations provide an unprecedented sampling of the large-scale field over a single magnetic cycle of a star other than the Sun. Our results show that 61 Cyg A has a dominant dipolar geometry except at chromospheric activity maximum. The dipole axis migrates from the southern to the northern hemisphere during the magnetic cycle. It is located at higher latitudes at chromospheric activity cycle minimum and at middle latitudes during cycle maximum. The dipole is strongest at activity cycle minimum and much weaker at activity cycle maximum.Conclusions.The behaviour of the large-scale dipolar field during the magnetic cycle resembles the solar magnetic cycle. Our results are further confirmation that 61 Cyg A indeed has a large-scale magnetic geometry that is comparable to the Sun’s, despite being a slightly older and cooler K dwarf.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Planetary perturbers: flaring star–planet interactions in Kepler and TESS;Monthly Notices of the Royal Astronomical Society;2023-11-03

2. A Hale-like Cycle in the Solar Twin 18 Scorpii;The Astrophysical Journal;2023-11-01

3. Simulations of Solar and Stellar Dynamos and Their Theoretical Interpretation;Space Science Reviews;2023-10

4. Stellar Activity Cycles;Space Science Reviews;2023-09-28

5. Far beyond the Sun − II. Probing the stellar magnetism of the young Sun ι Horologii from the photosphere to its corona;Monthly Notices of the Royal Astronomical Society;2023-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3