How well does surface magnetism represent deep Sun-like star dynamo action?

Author:

Finley A. J.ORCID,Brun A. S.ORCID,Strugarek A.ORCID,Cameron R.

Abstract

Context. For Sun-like stars, the generation of toroidal magnetic field from poloidal magnetic field is an essential piece of the dynamo mechanism powering their magnetism. Previous authors have estimated the net toroidal flux generated in each hemisphere of the Sun by exploiting its conservative nature. This only requires observations of the photospheric magnetic field and surface differential rotation. Aims. We explore this approach using a 3D magnetohydrodynamic dynamo simulation of a cool star, for which the magnetic field and its generation are precisely known throughout the entire star. Methods. Changes to the net toroidal flux in each hemisphere were evaluated using a closed line integral bounding the cross-sectional area of each hemisphere, following the application of Stokes theorem to the induction equation; the individual line segments correspond to the stellar surface, base, equator, and rotation axis. We evaluated the influence of the large-scale flows, the fluctuating flows, and magnetic diffusion on each of the line segments, along with their depth-dependence. Results. In the simulation, changes to the net toroidal flux via the surface line segment typically dominate the total line integral surrounding each hemisphere, with smaller contributions from the equator and rotation axis. The surface line integral is governed primarily by the large-scale flows, and the diffusive current; the latter acting like a flux emergence term due to the use of an impenetrable upper boundary in the simulation. The bulk of the toroidal flux is generated deep inside the convection zone, with the surface observables capturing this due to the conservative nature of the net flux. Conclusions. Surface magnetism and rotation can be used to produce an estimate of the net toroidal flux generated in each hemisphere, allowing us to constrain the reservoir of magnetic flux for the next magnetic cycle. However, this methodology cannot identify the physical origin or the location of the toroidal flux generation. In addition, not all dynamo mechanisms depend on the net toroidal field produced in each hemisphere, meaning this method may not be able to characterise every magnetic cycle.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3