Heavy-element accretion by proto-Jupiter in a massive planetesimal disc, revisited

Author:

Shibata S1ORCID,Helled R1ORCID,Kobayashi H2ORCID

Affiliation:

1. Institute for Computational Science (ICS), University of Zurich , Zurich, CH-8057, Switzerland

2. Department of Physics, Nagoya University , Nagoya, Aichi 464-8602, Japan

Abstract

ABSTRACT Planetesimal accretion is a key source for heavy-element enrichment in giant planets. It has been suggested that Jupiter’s enriched envelope is a result of planetesimal accretion during its growth, assuming it formed in a massive planetesimal disc. In this study, we simulate Jupiter’s formation in this scenario. We assume in situ formation and perform N-body simulations to infer the solid accretion rate. We find that tens-Earth masses of planetesimals can be captured by proto-Jupiter during the rapid gas accretion phase. However, if several embryos are formed near Jupiter’s core, which is an expected outcome in the case of a massive planetesimal disc, scattering from the embryos increases the eccentricity and inclination of planetesimals and therefore significantly reduces the accretion efficiency. We also compare our results with published semi-analytical models and show that these models cannot reproduce the N-body simulations especially when the planetesimal disc has a large eccentricity and inclination. We show that when the dynamical evolution of planetesimals is carefully modelled, the total mass of captured planetesimals Mcap,tot is 2M⊕ ≲ Mcap,tot ≲ 18M⊕. The metallicity of Jupiter’s envelope can be explained by the planetesimal accretion in our massive disc model despite the low accretion efficiency coming from the high eccentricity and inclination of planetesimals. Our study demonstrates the importance of detailed modelling of planetesimal accretion during the planetary growth and its implications to the heavy-element mass in gaseous planets.

Funder

Swiss National Science Foundation

JSPS

National Astronomical Observatory of Japan

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3