The mass of gas giant planets: Is Saturn a failed gas giant?

Author:

Helled RavitORCID

Abstract

The formation history of giant planets inside and outside the Solar System remains unknown. We suggest that runaway gas accretion is initiated only at a mass of ∼100 M and that this mass corresponds to the transition to a gas giant, a planet whose composition is dominated by hydrogen and helium. Delayed runaway accretion (by a few million years) and having it occurring at higher masses is likely a result of an intermediate stage of efficient heavy-element accretion (at a rate of ∼10−5M yr−1) that provides sufficient energy to hinder rapid gas accretion. This may imply that Saturn has never reached the stage of runaway gas accretion and that it is a “failed giant planet”. The transition to a gas giant planet above Saturn’s mass naturally explains the differences between the bulk metallicities and internal structures of Jupiter and Saturn. The mass at which a planet transitions to a gas giant planet strongly depends on the exact formation history and birth environment of the planet, which are still not well constrained for our Solar System. In terms of giant exoplanets, the occurrence of runaway gas accretion at planetary masses greater than Saturn’s can explain the transitions in the mass-radius relations of observed exoplanets and the high metallicity of intermediate-mass exoplanets.

Funder

Swiss National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3