Linking zonal winds and gravity – II. Explaining the equatorially antisymmetric gravity moments of Jupiter

Author:

Dietrich Wieland1ORCID,Wulff Paula12,Wicht Johannes1ORCID,Christensen Ulrich R1

Affiliation:

1. Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany

2. Georg August University, Institute for Geophysics, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

Abstract

ABSTRACT The recent gravity field measurements of Jupiter (Juno) and Saturn (Cassini) confirm the existence of deep zonal flows reaching to a depth of 5 per cent and 15 per cent of the respective radius. Relating the zonal wind-induced density perturbations to the gravity moments has become a major tool to characterize the interior dynamics of gas giants. Previous studies differ with respect to the assumptions made on how the wind velocity relates to density anomalies, on the functional form of its decay with depth, and on the continuity of antisymmetric winds across the equatorial plane. For the case of Jupiter, most of the suggested vertical structures exhibit a rather smooth radial decay of the zonal wind, which seems at odds with the observed secular variation of the magnetic field and the prevailing barotropy of the zonal winds. Moreover, the results relied on modifications of the surface zonal flows, an artificial equatorial regularization or ignored the equatorial discontinuity altogether. We favour an alternative structure, where the equatorially antisymmetric zonal wind in an equatorial latitude belt between ±21° remains so shallow that it does not contribute to the gravity signal. The winds at higher latitudes suffice to convincingly explain the measured gravity moments. Our results indicate that the winds are barotropic, i.e. constant along cylinders, in the outer $3000$ km and decay rapidly below. The preferred wind structure is 50 per cent deeper than previously thought, agrees with the measured odd gravity moments, is compliant with the requirement of an adiabatic atmosphere and unbiased by the treatment of the equatorial discontinuity. We discuss possible implications for the interpretation of the secular variation of Jupiter’s magnetic field.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3