Contributions of Jupiter's Deep‐Reaching Surface Winds to Magnetic Field Structure and Secular Variation

Author:

Wicht J.1ORCID,Christensen U. R.1ORCID

Affiliation:

1. Max Planck Institute for Solar System Research Göttingen Germany

Abstract

AbstractNASA's Juno mission delivered gravity data of exceptional quality. They indicate that the zonal winds, which rule the dynamics of Jupiter's cloud deck, must slow down significantly beyond a depth of about 3,000 km. Since the underlying inversion is highly non‐unique additional constraints on the flow properties at depth are required. These could potentially be provided by the magnetic field and its Secular Variation (SV) over time. However, the role of these zonal winds in Jupiter's magnetic field dynamics is little understood. Here we use numerical simulations to explore the impact of the zonal winds on the dynamo field produced at depth. We find that the main effect is an attenuation of the non‐axisymmetric field, which can be quantified by a modified magnetic Reynolds number Rm that combines flow amplitude and electrical conductivity profile. Values below Rm = 3 are required to retain a pronounced non‐axisymmetric feature like the Great Blue Spot (GBS), which seems characteristic for Jupiter's magnetic field. This allows for winds reaching as deep as 3,400 km. A SV pattern similar to the observation can only be found in some of our models. Its amplitude reflects the degree of cancellation between advection and diffusion rather than the zonal wind velocity at any depth. It is therefore not straightforward to make inferences on the deep structure of cloud‐level winds based on Jupiter's SV.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Simulations of Magnetic Effects on Zonal Flows in Giant Planets;Journal of Geophysical Research: Planets;2024-08

2. Quenching of zonal winds in Jupiter’s interior;Proceedings of the National Academy of Sciences;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3