Does concentration drive the scatter in the stellar-to-halo mass relation of galaxy clusters?

Author:

Zu Ying12ORCID,Shan Huanyuan3,Zhang Jun12,Singh Sukhdeep4,Shao Zhiwei1,Chen Xiaokai1,Yao Ji1ORCID,Golden-Marx Jesse B1,Cui Weiguang5ORCID,Jullo Eric6,Kneib Jean-Paul67,Zhang Pengjie12,Yang Xiaohu12

Affiliation:

1. Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

2. Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China

3. Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030, China

4. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

5. Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK

6. Aix-Marseille Univ, CNRS, CNES, LAM, Marseille 13388, France

7. Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-290 Versoix, Switzerland

Abstract

ABSTRACT Concentration is one of the key dark matter halo properties that could drive the scatter in the stellar-to-halo mass relation of massive clusters. We derive robust photometric stellar masses for a sample of brightest central galaxies (BCGs) in SDSS redmapper clusters at 0.17 < z < 0.3, and split the clusters into two equal-halo mass subsamples by their BCG stellar mass $M_*^{\mathrm{BCG}}$. The weak lensing profiles ΔΣ of the two cluster subsamples exhibit different slopes on scales below $1\, h^{-1}\, {\mathrm{Mpc}}$. To interpret such discrepancy, we perform a comprehensive Bayesian modelling of the two ΔΣ profiles by including different levels of miscentring effects between the two subsamples as informed by X-ray observations. We find that the two subsamples have the same average halo mass of $1.74\times 10^{14}\, h^{-1}\, \mathrm{M}_{\odot }$, but the concentration of the low-$M_*^{\mathrm{BCG}}$ clusters is $5.87_{-0.60}^{+0.77}$, ∼1.5σ smaller than that of their high-$M_*^{\mathrm{BCG}}$ counterparts ($6.95_{-0.66}^{+0.78}$). Furthermore, both cluster weak lensing and cluster-galaxy cross-correlations indicate that the large-scale bias of the low-$M_*^{\mathrm{BCG}}$, low-concentration clusters are ${\sim}10{{\ \rm per\ cent}}$ higher than that of the high-$M_*^{\mathrm{BCG}}$, high-concentration systems, hence possible evidence of the cluster assembly bias effect. Our results reveal a remarkable physical connection between the stellar mass within $20{-}30\, h^{-1}\, {\mathrm{kpc}}$, the dark matter mass within ${\sim}200\, h^{-1}\, {\mathrm{kpc}}$, and the cosmic overdensity on scales above $10\, h^{-1}\, {\mathrm{Mpc}}$, enabling a key observational test of theories of co-evolution between massive clusters and their central galaxies.

Funder

National Key Research and Development Program of China

National Science Foundation of China

SJTU

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3