Affiliation:
1. Department of Physics, Yale University , PO Box 208101, New Haven, CT 06520 , USA
2. HEP Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, IL 60439 , USA
Abstract
ABSTRACT
We introduce a new model of the evolution of the concentration of dark matter haloes, c(t). For individual haloes, our model approximates c(t) as a power law with a time-dependent index, such that at early times, concentration has a nearly constant value of c ≈ 3–4, and as cosmic time progresses, c(t) smoothly increases. Using large samples of halo merger trees taken from the Bolshoi–Planck and MultiDark Planck 2 cosmological simulations, we demonstrate that our three-parameter model can approximate the evolution of the concentration of individual haloes with a typical accuracy of 0.1 dex for $t\gtrsim 2\, {\rm Gyr}$ for all Bolshoi–Planck and MultiDark Planck 2 haloes of present-day peak mass $M_{0}\gtrsim 10^{11.5}\, {\rm M}_{\odot }$. We additionally present a new model of the evolution of the concentration of halo populations, which we show faithfully reproduces both average concentration growth and the diversity of smooth trajectories of c(t), including capturing correlations with halo mass and halo assembly history. Our publicly available source code, diffprof, can be used to generate Monte Carlo realizations of the concentration histories of cosmologically representative halo populations. diffprof is differentiable due to its implementation in the jax autodiff library, which facilitates the incorporation of our model into existing analytical halo model frameworks.
Funder
DOE
National Science Foundation
NASA
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献