A differentiable model of the evolution of dark matter halo concentration

Author:

Stevanovich Dash1,Hearin Andrew P2ORCID,Nagai Daisuke1ORCID

Affiliation:

1. Department of Physics, Yale University , PO Box 208101, New Haven, CT 06520 , USA

2. HEP Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, IL 60439 , USA

Abstract

ABSTRACT We introduce a new model of the evolution of the concentration of dark matter haloes, c(t). For individual haloes, our model approximates c(t) as a power law with a time-dependent index, such that at early times, concentration has a nearly constant value of c ≈ 3–4, and as cosmic time progresses, c(t) smoothly increases. Using large samples of halo merger trees taken from the Bolshoi–Planck and MultiDark Planck 2 cosmological simulations, we demonstrate that our three-parameter model can approximate the evolution of the concentration of individual haloes with a typical accuracy of 0.1 dex for $t\gtrsim 2\, {\rm Gyr}$ for all Bolshoi–Planck and MultiDark Planck 2 haloes of present-day peak mass $M_{0}\gtrsim 10^{11.5}\, {\rm M}_{\odot }$. We additionally present a new model of the evolution of the concentration of halo populations, which we show faithfully reproduces both average concentration growth and the diversity of smooth trajectories of c(t), including capturing correlations with halo mass and halo assembly history. Our publicly available source code, diffprof, can be used to generate Monte Carlo realizations of the concentration histories of cosmologically representative halo populations. diffprof is differentiable due to its implementation in the jax autodiff library, which facilitates the incorporation of our model into existing analytical halo model frameworks.

Funder

DOE

National Science Foundation

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DISCO-DJ I: a differentiable Einstein-Boltzmann solver for cosmology;Journal of Cosmology and Astroparticle Physics;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3