Constraining the entropy of formation from young transiting planet

Author:

Owen James E1ORCID

Affiliation:

1. Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

Abstract

ABSTRACT Recently, K2 and TESS have discovered transiting planets with radii between ∼5 and 10 R⊕ around stars with ages <100 Myr. These young planets are likely to be the progenitors of the ubiquitous super-Earths/sub-Neptunes, which are well studied around stars with ages ≳1 Gyr. The formation and early evolution of super-Earths/sub-Neptunes are poorly understood. Various planetary origin scenarios predict a wide range of possible formation entropies. We show how the formation entropies of young (∼20–60 Myr), highly irradiated planets can be constrained if their mass, radius, and age are measured. This method works by determining how low-mass an H/He envelope a planet can retain against mass-loss, this lower bound on the H/He envelope mass can then be converted into an upper bound on the entropy. If planet mass measurements with errors ≲20 per cent can be achieved for the discovered young planets around DS Tuc A and V1298 Tau, then insights into their origins can be obtained. For these planets, higher measured planet masses would be consistent with the standard core-accretion theory. In contrast, lower planet masses (≲6–7 M⊕) would require a ‘boil-off’ phase during protoplanetary disc dispersal to explain.

Funder

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3