The GAPS programme at TNG

Author:

Di Maio C.ORCID,Petralia A.,Micela G.,Lanza A. F.ORCID,Rainer M.,Malavolta L.,Benatti S.ORCID,Affer L.ORCID,Maldonado J.ORCID,Colombo S.,Damasso M.,Maggio A.ORCID,Biazzo K.,Bignamini A.ORCID,Borsa F.,Boschin W.ORCID,Cabona L.,Cecconi M.,Claudi R.ORCID,Covino E.ORCID,Di Fabrizio L.,Gratton R.,Lorenzi V.,Mancini L.,Messina S.,Molinari E.,Molinaro M.ORCID,Nardiello D.,Poretti E.,Sozzetti A.

Abstract

Context. The intrinsic variability due to the magnetic activity of young active stars is one of the main challenges in detecting and characterising exoplanets. The stellar activity is responsible for jitter effects observed both in photometric and spectroscopic observations that can impact our planetary detection sensitivity. Aims. We present a method able to model the stellar photosphere and its surface inhomogeneities (starspots) in young, active, and fast-rotating stars based on the cross-correlation function (CCF) technique, and we extract information about the spot configuration of the star. Methods. We developed Spot CCF, a tool able to model the deformation of the CCF profile due to the presence of multiple spots on the stellar surface. Within the Global Architecture of Planetary Systems (GAPS) Project at the Telescopio Nazionale Galileo, we analysed more than 300 spectra of the young planet-hosting star V1298 Tau provided by the HARPS-N high-resolution spectrograph. By applying the SpotCCF model to the CCFs, we extracted the spot configuration (latitude, longitude, and projected filling factor) of this star, and provide a new radial velocity (RV) time series for this target. Results. We find that the features identified in the CCF profiles of V1298 Tau are modulated by the stellar rotation, supporting our assumption that they are caused by starspots. The analysis suggests a differential rotation velocity of the star with lower rotation at higher latitudes. Also, we find that SpotCCF provides an improvement in RV extraction, with a significantly lower dispersion with respect to the commonly used pipelines. This allows mitigation of the stellar activity contribution modulated with stellar rotation. A detection sensitivity test, involving the direct injection of a planetary signal into the data, confirms that the SpotCCF model improves the sensitivity and ability to recover planetary signals. Conclusions. Our method enables us to model the stellar photosphere and extract the spot configuration of young, active, and rapidly rotating stars. It also allows the extraction of optimised RV time series, thereby enhancing our detection capabilities for new exoplanets and advancing our understanding of stellar activity.

Funder

ASI-INAF

ICEI project

PNRR - STILES project

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The GAPS Programme at TNG;Astronomy & Astrophysics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3