A possibly inflated planet around the bright young star DS Tucanae A

Author:

Benatti S.ORCID,Nardiello D.,Malavolta L.,Desidera S.,Borsato L.,Nascimbeni V.,Damasso M.,D’Orazi V.,Mesa D.,Messina S.,Esposito M.,Bignamini A.,Claudi R.,Covino E.,Lovis C.,Sabotta S.

Abstract

Context. The origin of the observed diversity of planetary system architectures is one of the main topics of exoplanetary research. The detection of a statistically significant sample of planets around young stars allows us to study the early stages of planet formation and evolution, but only a handful are known so far. In this regard a considerable contribution is expected from the NASA TESS satellite, which is now performing a survey of ~85% of the sky to search for short-period transiting planets. Aims. In its first month of operation TESS found a planet candidate with an orbital period of 8.14 days around a member of the Tuc-Hor young association (~40 Myr), the G6V main component of the binary system DS Tuc. If confirmed, it would be the first transiting planet around a young star suitable for radial velocity and/or atmospheric characterisation. Our aim is to validate the planetary nature of this companion and to measure its orbital and physical parameters. Methods. We obtained accurate planet parameters by coupling an independent reprocessing of the TESS light curve with improved stellar parameters and the dilution caused by the binary companion; we analysed high-precision archival radial velocities to impose an upper limit of about 0.1 MJup on the planet mass; we finally ruled out the presence of external companions beyond 40 au with adaptive optics images. Results. We confirm the presence of a young giant (R = 0.50 RJup) planet having a non-negligible possibility to be inflated (theoretical mass ≲ 20 M) around DS Tuc A. We discuss the feasibility of mass determination, Rossiter-McLaughlin analysis, and atmosphere characterisation allowed by the brightness of the star.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TOI-837 b: Characterisation, formation, and evolutionary history of an infant warm Saturn-mass planet;Astronomy & Astrophysics;2024-07-30

2. Transiting Exoplanet Atmospheres in the Era of JWST;Reviews in Mineralogy and Geochemistry;2024-07-01

3. Stellar companions and Jupiter-like planets in young associations;Astronomy & Astrophysics;2024-05

4. Characterization of K2-167 b and CALM, a new stellar activity mitigation method;Monthly Notices of the Royal Astronomical Society;2024-01-19

5. Nearby Young Stars and Young Moving Groups;Handbook of X-ray and Gamma-ray Astrophysics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3