Affiliation:
1. Department of Earth and Space Sciences, Indian Institute of Space Science & Technology, Thiruvananthapuram 695547, Kerala, India
Abstract
ABSTRACT
Methanol masers at 6.7 GHz are the brightest of class II methanol masers and have been found exclusively towards massive star-forming regions. These masers can thus be used as a unique tool to probe the early phases of massive star formation. We present here a study of the spectral energy distributions of 320 6.7 GHz methanol masers chosen from the Methanol Multibeam catalogue, which fall in the Hi-GAL range (|l| ≤ 60°, |b| ≤ 1°). The spectral energy distributions are constructed from 870 to 70 µm using data from the ATLASGAL and Hi-GAL surveys. The emission from cold dust is modelled by a single grey body component fit. We estimate the clump properties such as mass, far-infrared luminosity, and column density using the best-fitting parameters of the SED fits. Considering the Kauffman criteria for massive star formation, we find that all but a few maser hosts have the potential to harbour at least one high-mass star. The physical properties of the methanol maser hosts are also discussed. The evolutionary stages of 6.7 GHz maser sources, explored using the mass luminosity diagram, suggest that they are predominantly associated with high-mass stars with the majority being in the accretion phase. However, we observe a small number of sources that could possibly be related to intermediate- or low-mass stars.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献