Unveiling the Cosmic Cradle: clustering and massive star formation in the enigmatic Galactic bubble N59

Author:

Paulson Sonu Tabitha1ORCID,Mallick K K2ORCID,Ojha D K1ORCID

Affiliation:

1. Tata Institute of Fundamental Research , Mumbai 400005 , India

2. Aryabhatta Research Institute of Observational Sciences (ARIES) , Nainital 263129 , India

Abstract

ABSTRACT In this paper, we have conducted an investigation focused on a segment of the Spitzer mid-infrared bubble N59, specifically referred to as R1 within our study. Situated in the inner Galactic plane, this region stands out for its hosting of five 6.7 GHz methanol masers, as well as numerous compact $\mathrm{H}\, \rm {{\small II}}$ regions, massive clumps, filaments, and prominent bright rims. As 6.7 GHz masers are closely linked to the initial phases of high-mass star formation, exploring regions that exhibit a high abundance of these maser detections provides an opportunity to investigate relatively young massive star-forming sites. To characterize the R1 region comprehensively, we utilize multiwavelength (archival) data from optical to radio wavelengths, together with 13CO and C18O data. Utilizing the Gaia DR3 data, we estimate the distance towards the bubble to be 4.66 ± 0.70 kpc. By combining near-infrared (NIR) and mid-infrared (MIR) data, we identify 12 Class I and 8 Class II sources within R1. Furthermore, spectral energy distribution (SED) analysis of selected sources reveals the presence of four embedded high-mass sources with masses ranging from 8.70 to 14.20 M⊙. We also identified several O and B-type stars from radio continuum analysis. Our molecular study uncovers two distinct molecular clouds in the region, which, although spatially close, occupy different regions in velocity space. We also find indications of a potential hub-filament system fostering star formation within the confines of R1. Finally, we propose that the feedback from the $\mathrm{H}\, \rm {{\small II}}$ regions has led to the formation of prominent Bright Rimmed Clouds (BRCs) within our region of interest.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3