New Methanol Maser Transitions and Maser Variability Identified from an Accretion Burst Source G358.93-0.03

Author:

Miao Dan,Chen XiORCID,Song Shi-MinORCID,Sobolev Andrej M.,Breen Shari L.,MacLeod Gordon C.,Li Bin,Parfenov Sergey,Bisyarina Anastasia,Shen Zhi-QiangORCID

Abstract

Abstract The high-mass young stellar object G358.93-0.03 underwent an accretion burst during the period from 2019 January to June. Given its extraordinary conditions, a number of new maser transitions may have been naturally excited during the burst stage. Searching for new maser lines and monitoring maser variability associated with the accretion burst event are important for understanding the complex conditions of the massive star formation toward G358.93-0.03. In this work, using the Shanghai 65 m Tianma Radio Telescope, we continuously monitored the multiple maser (including methanol and water) transitions toward G358.93-0.03 during the burst in the period from 2019 March 14 to May 20. There were 23 CH3OH maser transitions and one H2O maser transition detected from the monitoring. Nearly all the detected maser transitions toward this source have dramatic variations in their intensities within a short period of ∼2 months. Eight new methanol transitions from G358.93-0.03 were identified to be masering in our observations based on their spectral profile, line width, intensity, and the rotation diagram. During the monitoring, the gas temperature of the clouds in the case of saturated masers can show a significant decline, indicating that the maser clouds were going through a cooling process, possibly associated with the propagation of a heat wave induced by the accretion burst. Some of the maser transitions were even detected with the second flares in 2019 April, which may be associated with the process of the heat-wave propagation induced by the same accretion burst acting on different maser positions.

Funder

National Natural Science Foundation of Chian

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3