Large-scale Effect of an Accretion Burst in the High-Mass Young Stellar Object G358.93-0.03-MM1

Author:

Miao Dan,Chen XiORCID,Bayandina Olga S.,Sobolev Andrej M.,Li Wan-jun,Sugiyama Koichiro

Abstract

Abstract The high-mass young stellar object G358.93-0.03-MM1 underwent a rapid accretion burst event from 2019 January to June, resulting in flares observed in most class II methanol maser transitions starting in mid-January. In contrast, the 22.235 GHz water maser flare started in mid-April. To investigate the physical origin of this significant difference, we made the Karl G. Jansky Very Large Array observations toward the G358.93-0.03 region on 2019 March 23 and April 4 and obtained the intensity and spatial distribution images of the water maser as well as the continuum emissions at Ku and K bands on the epoch close to the water maser flare. A comparative analysis, incorporating previously reported detections in February (pre-water maser flare) and June (post-water maser flare), reveals the time lag between the accretion burst and water maser flare. These observations confirm the variations of the propagation speed of a heatwave induced by the accretion burst in different directions: the heatwave is decelerated in dense regions (e.g., the disk and jet), whereas in directions from G358-MM1 to water maser components, the heatwave speed is supposed to be close to the speed of light. Variations in flux density and spatial positions were detected for water masers and continuum emissions, indicating that the accretion burst event originating from G358-MM1 affects not only the immediate environment within a dense structure of 0.″2 (1400 au at a source distance of 6.75 kpc) around MM1 itself, but also exerts influence on broader-scale regions extending up to approximately 3″ (21,000 au).

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3