DeepMerge – II. Building robust deep learning algorithms for merging galaxy identification across domains

Author:

Ćiprijanović A1ORCID,Kafkes D1,Downey K2,Jenkins S2,Perdue G N1,Madireddy S3,Johnston T4,Snyder G F5ORCID,Nord B126ORCID

Affiliation:

1. Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA

2. Department of Astronomy and Astrophysics, University of Chicago, IL 60637, USA

3. Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA

4. Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA

5. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

6. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

Abstract

ABSTRACT In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations. Unfortunately, training a model on simulation data and then applying it to instrument data leads to a substantial and potentially even detrimental decrease in model accuracy on the new target data set. Simulated and instrument data represent different data domains, and for an algorithm to work in both, domain-invariant learning is necessary. Here, we employ domain adaptation techniques – Maximum Mean Discrepancy as an additional transfer loss and Domain Adversarial Neural Networks – and demonstrate their viability to extract domain-invariant features within the astronomical context of classifying merging and non-merging galaxies. Additionally, we explore the use of Fisher loss and entropy minimization to enforce better in-domain class discriminability. We show that the addition of each domain adaptation technique improves the performance of a classifier when compared to conventional deep learning algorithms. We demonstrate this on two examples: between two Illustris-1 simulated data sets of distant merging galaxies, and between Illustris-1 simulated data of nearby merging galaxies and observed data from the Sloan Digital Sky Survey. The use of domain adaptation techniques in our experiments leads to an increase of target domain classification accuracy of up to ${\sim }20{{\ \rm per\ cent}}$. With further development, these techniques will allow astronomers to successfully implement neural network models trained on simulation data to efficiently detect and study astrophysical objects in current and future large-scale astronomical surveys.

Funder

U.S. Department of Energy

Office of Science

Argonne National Laboratory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3