ERGO-ML: comparing IllustrisTNG and HSC galaxy images via contrastive learning

Author:

Eisert Lukas1ORCID,Bottrell Connor234ORCID,Pillepich Annalisa1ORCID,Shimakawa Rhythm56ORCID,Rodriguez-Gomez Vicente7ORCID,Nelson Dylan8ORCID,Angeloudi Eirini9ORCID,Huertas-Company Marc9ORCID

Affiliation:

1. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg , Germany

2. International Centre for Radio Astronomy Research, University of Western Australia , Stirling Hwy, Crawley, WA 6009 , Australia

3. Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, University of Tokyo , Kashiwa, 277-8583 Chiba , Japan

4. Center for Data-Driven Discovery, Kavli IPMU (WPI), UTIAS, The University of Tokyo , Kashiwa, 277-8583 Chiba , Japan

5. Waseda Institute for Advanced Study (WIAS), Waseda University , Nishi Waseda, Shinjuku, 169-0051 Tokyo , Japan

6. Center for Data Science, Waseda University , 1-6-1, Nishi-Waseda, Shinjuku, 169-0051 Tokyo , Japan

7. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México , Apdo. Postal 72-3, 58089 Morelia , Mexico

8. Universität Heidelberg, Zentrum für Astronomie, Institut für theoretische Astrophysik , Albert-Ueberle-Str. 2, D-69120 Heidelberg , Germany

9. Departamento de Astrofísica, Instituto de Astrofísica de Canarias, Universidad de La Laguna , E-38200 La Laguna , Spain

Abstract

ABSTRACT Modern cosmological hydrodynamical galaxy simulations provide tens of thousands of reasonably realistic synthetic galaxies across cosmic time. However, quantitatively assessing the level of realism of simulated universes in comparison to the real one is difficult. In this paper of the Extracting Reality from Galaxy Observables with Machine Learning series, we utilize contrastive learning to directly compare a large sample of simulated and observed galaxies based on their stellar-light images. This eliminates the need to specify summary statistics and allows to exploit the whole information content of the observations. We produce survey-realistic galaxy mock data sets resembling real Hyper Suprime-Cam (HSC) observations using the cosmological simulations TNG50 and TNG100. Our focus is on galaxies with stellar masses between 109 and 1012 M⊙ at z = 0.1–0.4. This allows us to evaluate the realism of the simulated TNG galaxies in comparison to actual HSC observations. We apply the self-supervised contrastive learning method Nearest Neighbour Contrastive Learning to the images from both simulated and observed data sets (g-, r-, i-bands). This results in a 256-dimensional representation space, encoding all relevant observable galaxy properties. First, this allows us to identify simulated galaxies that closely resemble real ones by seeking similar images in this multidimensional space. Even more powerful, we quantify the alignment between the representations of these two image sets, finding that the majority (≳ 70 per cent) of the TNG galaxies align well with observed HSC images. However, a subset of simulated galaxies with larger sizes, steeper Sérsic profiles, smaller Sérsic ellipticities, and larger asymmetries appears unrealistic. We also demonstrate the utility of our derived image representations by inferring properties of real HSC galaxies using simulated TNG galaxies as the ground truth.

Funder

DFG

NSERC

GCS

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3