A post-merger enhancement only in star-forming Type 2 Seyfert galaxies: the deep learning view

Author:

Avirett-Mackenzie M S1,Villforth C1ORCID,Huertas-Company M234ORCID,Wuyts S1ORCID,Alexander D M5,Bonoli S67,Lapi A8ORCID,Lopez I E910ORCID,Ramos Almeida C23ORCID,Shankar F11ORCID

Affiliation:

1. Department of Physics, University of Bath , Claverton Down, Bath BA2 7AY , UK

2. Instituto de Astrofísica de Canarias , Calle Vía Láctea, s/n, E-38205 La Laguna, Tenerife , Spain

3. Departamento de Astrofísica, Universidad de La Laguna , E-38206 La Laguna, Tenerife , Spain

4. LERMA, Observatoire de Paris, CNRS , PSL, Université Paris Diderot F-75013 , France

5. Centre for Extragalactic Astronomy, Department of Physics, Durham University , Durham DH1 3LE , UK

6. Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea , 4, E-20018 Donostia-San Sebastián , Spain

7. IKERBASQUE, Basque Foundation for Science , E-48013 Bilbao , Spain

8. SISSA , Via Bonomea 265, I-34136 Trieste , Italy

9. Dipartimento de Fisica e Astronomia ‘Augusto Righi’, Università di Bologna , Via Gobetti 93/2, I-40129 Bologna , Italy

10. INAF – Osservatorio di Astrofisica e Scienz dello Spazio di Bologna , Via Gobetti, 93/3, I-40129 Bologna , Italy

11. School of Physics and Astronomy, University of Southampton , Highfield, Southampton SO17 1BJ , UK

Abstract

ABSTRACT Supermassive black holes require a reservoir of cold gas at the centre of their host galaxy in order to accrete and shine as active galactic nuclei (AGN). Major mergers have the ability to drive gas rapidly inwards, but observations trying to link mergers with AGN have found mixed results due to the difficulty of consistently identifying galaxy mergers in surveys. This study applies deep learning to this problem, using convolutional neural networks trained to identify simulated post-merger galaxies from survey-realistic imaging. This provides a fast and repeatable alternative to human visual inspection. Using this tool, we examine a sample of ∼8500 Seyfert 2 galaxies ($L[\mathrm{O\, {\small III}}] \sim 10^{38.5 - 42}$ erg s−1) at z < 0.3 in the Sloan Digital Sky Survey and find a merger fraction of $2.19_{-0.17}^{+0.21}$ per cent compared with inactive control galaxies, in which we find a merger fraction of $2.96_{-0.20}^{+0.26}$ per cent, indicating an overall lack of mergers among AGN hosts compared with controls. However, matching the controls to the AGN hosts in stellar mass and star formation rate reveals that AGN hosts in the star-forming blue cloud exhibit a ∼2 × merger enhancement over controls, while those in the quiescent red sequence have significantly lower relative merger fractions, leading to the observed overall deficit due to the differing M*–SFR distributions. We conclude that while mergers are not the dominant trigger of all low-luminosity, obscured AGN activity in the nearby Universe, they are more important to AGN fuelling in galaxies with higher cold gas mass fractions as traced through star formation.

Funder

Horizon 2020

Royal Society

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Higher Education Funding Council for England

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3