The redshift evolution of the S0 fraction for z < 1 in COSMOS

Author:

Cavanagh Mitchell K1ORCID,Bekki Kenji1,Groves Brent A12ORCID

Affiliation:

1. International Centre for Radio Astronomy Research, The University of Western Australia , 7 Fairway, Crawley, WA 6009, Australia

2. Research School of Astronomy and Astrophysics, Australian National University, Mt Stromlo Observatory , Weston Creek, ACT 2611, Australia

Abstract

ABSTRACT Lenticular (S0) galaxies are galaxies that exhibit a bulge and disc component, yet lack any clear spiral features. With features considered intermediary between spirals and ellipticals, S0s have been proposed to be a transitional morphology, however their exact origin and nature is still debated. In this work, we study the redshift evolution of the S0 fraction out to z ∼ 1 using deep learning to classify F814W (i band) Hubble Space Telescope-Advanced Camera for Surveys (HST-ACS) images of 85 378 galaxies in the Cosmic Evolution Survey (COSMOS). We classify galaxies into four morphological categories: elliptical (E), S0, spiral (Sp), and irregular/miscellaneous (IrrM). Our deep learning models, initially trained to classify Sloan Digital Sky Survey (SDSS) images with known morphologies, have been successfully adapted to classify high-redshift COSMOS images via transfer learning and data augmentation, enabling us to classify S0s with superior accuracy. We find that there is an increase in the fraction of S0 galaxies with decreasing redshift, along with a corresponding reduction in the fraction of spirals. We find a bimodality in the mass distribution of our classified S0s, from which we find two separate S0s populations: high-mass S0s, which are mostly red and quiescent; and low-mass S0s, which are generally bluer and include both passive and star-forming S0s, the latter of which cannot solely be explained via the faded spiral formation pathway. We also find that the S0 fraction in high-mass galaxies begins rising at higher z than in low-mass galaxies, implying that high-mass S0s evolved earlier.

Funder

Australian Government

University of Western Australia

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3