Galaxy mergers in Subaru HSC-SSP: A deep representation learning approach for identification, and the role of environment on merger incidence

Author:

Omori Kiyoaki ChristopherORCID,Bottrell ConnorORCID,Walmsley MikeORCID,Yesuf Hassen M.,Goulding Andy D.,Ding Xuheng,Popping GergöORCID,Silverman John D.,Takeuchi Tsutomu T.ORCID,Toba YoshikiORCID

Abstract

Context.Galaxy mergers and interactions are an important process within the context of galaxy evolution, however, there is still no definitive method which identifies pure and complete merger samples is still not definitive. A method for creating such a merger sample is required so that studies can be conducted to deepen our understanding of the merger process and its impact on galaxy evolution.Aims.In this work, we take a deep-learning-based approach for galaxy merger identification in Subaru HSC-SSP, using deep representation learning and fine-tuning, with the aim of creating a pure and complete merger sample within the HSC-SSP survey. We can use this merger sample to conduct studies on how mergers affect galaxy evolution.Methods.We used Zoobot, a deep learning representation learning model pretrained on citizen science votes on Galaxy Zoo DeCALS images. We fine-tuned Zoobot for the purpose of merger classification of images of SDSS and GAMA galaxies in HSC-SSP public data release 3. Fine-tuning was done using ∼1200 synthetic HSC-SSP images of galaxies from the TNG simulation. We then found merger probabilities on observed HSC images using the fine-tuned model. Using our merger probabilities, we examined the relationship between merger activity and environment.Results.We find that our fine-tuned model returns an accuracy on the synthetic validation data of ∼76%. This number is comparable to those of previous studies in which convolutional neural networks were trained with simulation images, but with our work requiring a far smaller number of training samples. For our synthetic data, our model is able to achieve completeness and precision values of ∼80%. In addition, our model is able to correctly classify both mergers and non-mergers of diverse morphologies and structures, including those at various stages and mass ratios, while distinguishing between projections and merger pairs. For the relation between galaxy mergers and environment, we find two distinct trends. Using stellar mass overdensity estimates for TNG simulations and observations using SDSS and GAMA, we find that galaxies with higher merger scores favor lower density environments on scales of 0.5 to 8h−1Mpc. However, below these scales in the simulations, we find that galaxies with higher merger scores favor higher density environments.Conclusions.We fine-tuned a citizen-science trained deep representation learning model for purpose of merger galaxy classification in HSC-SSP, and make our merger probability catalog available to the public. Using our morphology-based catalog, we find that mergers are more prevalent in lower density environments on scales of 0.5–8h−1Mpc.

Funder

Japan Society for the Promotion of Science

NSFC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GALAXY CRUISE: Spiral and ring classifications for bright galaxies at z = 0.01–0.3;Publications of the Astronomical Society of Japan;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3