A morphological segmentation approach to determining bar lengths

Author:

Cavanagh Mitchell K1ORCID,Bekki Kenji1,Groves Brent A12ORCID

Affiliation:

1. International Centre for Radio Astronomy Research, The University of Western Australia , 7 Fairway, Crawley, WA 6009 , Australia

2. Research School of Astronomy and Astrophysics, Australian National University, Mt Stromlo Observatory , Weston Creek, ACT 2611 , Australia

Abstract

ABSTRACT Bars are important drivers of galaxy evolution, influencing many physical processes and properties. Characterizing bars is a difficult task, especially in large-scale surveys. In this work, we propose a novel morphological segmentation technique for determining bar lengths based on deep learning. We develop U-Nets capable of decomposing galaxy images into pixel masks highlighting the regions corresponding to bars and spiral arms. We demonstrate the versatility of this technique through applying our models to galaxy images from two different observational data sets with different source imagery, and to RGB colour and monochromatic galaxy imaging. We apply our models to analyse SDSS and Subaru HyperSuprime Cam imaging of barred galaxies from the NA10 and Sydney AAO Multi-object IFS catalogues in order to determine the dependence of bar length on stellar mass, morphology, redshift and the spin parameter proxy $\lambda _{R_e}$. Based on the predicted bar masks, we show that the relative bar scale length varies with morphology, with early type galaxies hosting longer bars. While bars are longer in more massive galaxies in absolute terms, relative to the galaxy disc they are actually shorter. We also find that the normalized bar length decreases with increasing redshift, with bars in early type galaxies exhibiting the strongest rate of decline. We show that it is possible to distinguish spiral arms and bars in monochrome imaging, although for a given galaxy the estimated length in monochrome tends to be longer than in colour imaging. Our morphological segmentation technique can be efficiently applied to study bars in large-scale surveys and even in cosmological simulations.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3