Topology and obliquity of core magnetic fields in shaping seismic properties of slowly rotating evolved stars

Author:

Loi Shyeh Tjing1ORCID

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

ABSTRACT It is thought that magnetic fields must be present in the interiors of stars to resolve certain discrepancies between theory and observation (e.g. angular momentum transport), but such fields are difficult to detect and characterize. Asteroseismology is a powerful technique for inferring the internal structures of stars by measuring their oscillation frequencies, and succeeds particularly with evolved stars, owing to their mixed modes, which are sensitive to the deep interior. The goal of this work is to present a phenomenological study of the combined effects of rotation and magnetism in evolved stars, where both are assumed weak enough that first-order perturbation theory applies, and we focus on the regime where Coriolis and Lorentz forces are comparable. Axisymmetric ‘twisted-torus’ field configurations are used, which are confined to the core and allowed to be misaligned with respect to the rotation axis. Factors such as the field radius, topology and obliquity are examined. We observe that fields with finer-scale radial structure and/or smaller radial extent produce smaller contributions to the frequency shift. The interplay of rotation and magnetism is shown to be complex: we demonstrate that it is possible for nearly symmetric multiplets of apparently low multiplicity to arise even under a substantial field, which might falsely appear to rule out its presence. Our results suggest that proper modelling of rotation and magnetism, in a simultaneous fashion, may be required to draw robust conclusions about the existence/non-existence of a core magnetic field in any given object.

Funder

Churchill College, University of Cambridge

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3