Mode Mixing and Rotational Splittings. I. Near-degeneracy Effects Revisited

Author:

Ong J. M. JoelORCID,Bugnet LisaORCID,Basu SarbaniORCID

Abstract

Abstract Rotation is typically assumed to induce strictly symmetric rotational splitting into the rotational multiplets of pure p- and g-modes. However, for evolved stars exhibiting mixed modes, avoided crossings between different multiplet components are known to yield asymmetric rotational splitting, in particular for near-degenerate mixed-mode pairs, where notional pure p-modes are fortuitously in resonance with pure g-modes. These near-degeneracy effects have been described in subgiants, but their consequences for the characterization of internal rotation in red giants have not previously been investigated in detail, in part owing to theoretical intractability. We employ new developments in the analytic theory of mixed-mode coupling to study these near-resonance phenomena. In the vicinity of the most p-dominated mixed modes, the near-degenerate intrinsic asymmetry from pure rotational splitting increases dramatically over the course of stellar evolution, and it depends strongly on the mode-mixing fraction ζ. We also find that a linear treatment of rotation remains viable for describing the underlying p- and g-modes, even when it does not for the resulting mixed modes undergoing these avoided crossings. We explore observational consequences for potential measurements of asymmetric mixed-mode splitting, which has been proposed as a magnetic-field diagnostic. Finally, we propose improved measurement techniques for rotational characterization, exploiting the linearity of rotational effects on the underlying p/g-modes, while still accounting for these mixed-mode coupling effects.

Funder

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3