Asteroseismic measurement of core and envelope rotation rates for 2006 red giant branch stars

Author:

Li GangORCID,Deheuvels Sébastien,Ballot JérômeORCID

Abstract

Context. Tens of thousands of red giant stars in the Kepler data exhibit solar-like oscillations. The mixed-mode characteristics of their oscillations enable us to study the internal physics from the core to the surface, such as differential rotation. However, envelope rotation rates have only been measured for about a dozen red giant branch (RGB) stars so far. This limited the theoretical interpretation of angular momentum transport in post-main sequence phases. Aims. We report the measurements of g-mode properties and differential rotation in the largest sample of Kepler RGB stars. Methods. We applied a new approach to calculate the asymptotic frequencies of mixed modes, which accounts for so-called near-degeneracy effects (NDEs) and leads to improved measurements of envelope rotation rates. By fitting these asymptotic expressions to the observations, we obtained measurements of the properties of g modes (period spacing, ΔΠ1, coupling factor, q, g-mode offset term, εg, small separation, δν01) and the internal rotation (mean core, Ωcore, and envelope, Ωenv, rotation rates). Results. Among 2495 stars with clear mixed-mode patterns, we found that 800 show doublets and 1206 show triplets, while the remaining stars do not show any rotational splittings. We measured core rotation rates for 2006 red giants, doubling the size of pre-existing catalogues. This led us to discover an over-density of stars that are narrowly distributed around a well-defined ridge in the plane, showing core rotation rate versus evolution along the RGB. These stars could experience a different angular momentum transport compared to other red giants. With this work, we also increased the sample of stars with measured envelope rotation rates by two orders of magnitude. We found a decreasing trend between envelope rotation rates and evolution, implying that the envelopes slow down with expansion, as expected. We found 243 stars whose envelope rotation rates are significantly larger than zero. For these stars, the core-to-envelope rotation ratios are around Ωcoreenv ∼ 20 and show a large spread with evolution. Several stars show extremely mild differential rotations, with core-to-surface ratios between 1 and 2. These stars also have very slow core rotation rates, suggesting that they go through a peculiar rotational evolution. We also discovered more stars located below the ΔΠ1–Δν degeneracy sequence, which presents an opportunity to study the history of plausible stellar mergers.

Funder

ANR

KU Leuven

FWO

Dick Hunstead Fund

NSFC

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3