Affiliation:
1. TAPIR , Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA
2. Université Paris-Saclay, Université Paris Cité , CEA, CNRS, AIM, Gif-sur-Yvette F-91191, France
Abstract
ABSTRACTStrong magnetic fields are observed in a substantial fraction of upper main sequence stars and white dwarfs. Many such stars are observed to exhibit photometric modulations as the magnetic poles rotate in and out of view, which could be a consequence of magnetic perturbations to the star’s thermal structure. The magnetic pressure is typically larger than the gas pressure at the star’s photosphere, but much smaller than the gas pressure in the star’s interior, so the expected surface flux perturbations are not clear. We compute magnetically perturbed stellar structures of young $3 \, \mathrm{M}_\odot$ stars that are in both hydrostatic and thermal equilibrium, and which contain both poloidal and toroidal components of a dipolar magnetic field as expected for stable fossil fields. This provides semi-analytical models of such fields in baroclinic stably stratified regions. The star’s internal pressure, temperature, and flux perturbations can have a range of magnitudes, though we argue the most likely configurations exhibit flux perturbations much smaller than the ratio of surface magnetic pressure to surface gas pressure, but much larger than the ratio of surface magnetic pressure to central gas pressure. The magnetic pole is hotter than the equator in our models, but a cooler magnetic pole is possible depending on the magnetic field configuration. The expected flux variations for observed field strengths are δL/L ≲ 10−6, much smaller than those observed in magnetic stars, suggesting that observed perturbations stem from changes to the emergent spectrum rather than changes to the bolometric flux.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献