The GALAH Survey: chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and Gaia eDR3

Author:

Buder Sven12ORCID,Lind Karin3,Ness Melissa K45,Feuillet Diane K6ORCID,Horta Danny7ORCID,Monty Stephanie12ORCID,Buck Tobias8ORCID,Nordlander Thomas12ORCID,Bland-Hawthorn Joss29ORCID,Casey Andrew R1011ORCID,De Silva Gayandhi M12,D’Orazi Valentina13,Freeman Ken C12,Hayden Michael R92,Kos Janez14,Martell Sarah L215ORCID,Lewis Geraint F9ORCID,Lin Jane12,Schlesinger Katharine J1,Sharma Sanjib29ORCID,Simpson Jeffrey D215ORCID,Stello Dennis291516,Zucker Daniel B21217,Zwitter Tomaž14ORCID,Ciucă Ioana1218,Horner Jonathan19ORCID,Kobayashi Chiaki220ORCID,Ting (丁源森) Yuan-Sen121,Wyse Rosemary F G22ORCID,

Affiliation:

1. Research School of Astronomy & Astrophysics, Australian National University, Canberra ACT 2611, Australia

2. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

3. Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden

4. Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York NY 10027, USA

5. Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York NY 10010, USA

6. Lund Observatory, Department of Astronomy & Theoretical Physics, Box 43, SE-221 00 Lund, Sweden

7. Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK

8. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

9. Sydney Institute for Astronomy, School of Physics, The University of Sydney, A28, NSW 2006, Sydney, Australia

10. Monash Centre for Astrophysics, Monash University, Wellington Rd, Clayton, VIC 3800, Australia

11. School of Physics and Astronomy, Monash University, Wellington Rd, Clayton, VIC 3800, Australia

12. Department of Physics & Astronomy, Macquarie University, Sydney NSW 2109, Australia

13. Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy

14. Faculty of Mathematics & Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

15. School of Physics, UNSW, Sydney NSW 2052, Australia

16. Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

17. Macquarie University Research Centre for Astronomy, Astrophysics & Astrophotonics, Sydney NSW 2109, Australia

18. Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK

19. Centre for Astrophysics, University of Southern Queensland, Toowoomba QLD 4350, Australia

20. Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, UK

21. Research School of Computer Science, Australian National University, Acton ACT 2601, Australia

22. Center for Astrophysical Sciences & Department of Physics & Astronomy, The Johns Hopkins University, Baltimore MD 21218, USA

Abstract

ABSTRACT Since the advent of Gaia astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, Gaia-Sausage-Enceladus (GSE), appears to be an early ‘building block’ given its virial mass $\gt 10^{10}\, \mathrm{M_\odot }$ at infall (z ∼ 1−3). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-α abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] versus [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including $30 \lt \sqrt{J_R / \, \mathrm{kpc\, km\, s^{-1}}} \lt 55$, we can characterize an unprecedented 24 abundances of this structure with GALAH+ DR3. With our chemical selection we characterize the dynamical properties of the GSE, for example mean $\sqrt{J_R / \, \mathrm{kpc\, km\, s^{-1}}} =$$26_{-14}^{+9}$. We find only $(29\pm 1){{\ \rm per\ cent}}$ of the GSE stars within the clean dynamical selection region. Our methodology will improve future studies of accreted structures and their importance for the formation of the Milky Way.

Funder

Australian Research Council

European Research Council

Slovenian Research Agency

European Space Agency

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3