Determining Stellar Elemental Abundances from DESI Spectra with the Data-driven Payne

Author:

Zhang MengORCID,Xiang MaoshengORCID,Ting Yuan-SenORCID,Wang Jiahui,Li HainingORCID,Zou HuORCID,Nie JundanORCID,Mou Lanya,Wu Tianmin,Wu Yaqian,Liu Jifeng

Abstract

Abstract Stellar abundances for a large number of stars provide key information for the study of Galactic formation history. Large spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI) and LAMOST take median-to-low-resolution (R ≲ 5000) spectra in the full optical wavelength range for millions of stars. However, the line-blending effect in these spectra causes great challenges for elemental abundance determination. Here we employ DD-Payne, a data-driven method regularized by differential spectra from stellar physical models, to the DESI early data release spectra for stellar abundance determination. Our implementation delivers 15 labels, including effective temperature T eff, surface gravity log g , microturbulence velocity v mic, and the abundances for 12 individual elements, namely C, N, O, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, and Ni. Given a spectral signal-to-noise ratio of 100 per pixel, the internal precisions of the label estimates are about 20 K for T eff, 0.05 dex for log g , and 0.05 dex for most elemental abundances. These results agree with the theoretical limits from the Crámer–Rao bound calculation within a factor of 2. The majority of the accreted halo stars contributed by the Gaia–Enceladus–Sausage are discernible from the disk and in situ halo populations in the resultant [Mg/Fe]–[Fe/H] and [Al/Fe]–[Fe/H] abundance spaces. We also provide distance and orbital parameters for the sample stars, which spread over a distance out to ∼100 kpc. The DESI sample has a significantly higher fraction of distant (or metal-poor) stars than the other existing spectroscopic surveys, making it a powerful data set for studying the Galactic outskirts. The catalog is publicly available.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3