Finding accreted stars in the Milky Way: clues from NIHAO simulations

Author:

Buder S12ORCID,Mijnarends L12,Buck T34ORCID

Affiliation:

1. Research School of Astronomy & Astrophysics, Australian National University , Canberra ACT 2611 , Australia

2. Center of Excellence for Astrophysics in Three Dimensions (ASTRO-3D) , Australia

3. Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen , Im Neuenheimer Feld 205, D-69120 Heidelberg , Germany

4. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik , Albert-Ueberle-Straße 2, D-69120 Heidelberg , Germany

Abstract

ABSTRACT Exploring the marks left by galactic accretion in the Milky Way helps us understand how our Galaxy was formed. However, finding and studying accreted stars and the galaxies they came from has been challenging. This study uses a simulation from the Numerical Investigation of a Hundred Astronomical Objects project, which now includes a wider range of chemical compositions, to find better ways to spot these accreted stars. By comparing our findings with data from the GALAH spectroscopic survey, we confirm that the observationally established diagnostics of [Al/Fe] versus [Mg/Mn] also show a separation of in situ and accreted stars in the simulation, but stars from different accretion events tend to overlap in this plane even without observational uncertainties. Looking at the relationship between stellar age and linear or logarithmic abundances, such as [Fe/H], we can clearly separate different groups of these stars if the uncertainties in their chemical makeup are less than 0.15 dex and less than 20 per cent for their ages. This method shows promise for studying the history of the Milky Way and other galaxies. Our work highlights how important it is to have accurate measurements of stellar ages and chemical content. It also shows how simulations can help us understand the complex process of galaxies merging and suggest how these events might relate to the differences we see between our Galaxy’s thin and thick disc stars. This study provides a way to compare theoretical models with real observations, opening new paths for research in both our own Galaxy and beyond.

Funder

Australian Research Council

European Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3