Magnetogenesis around the first galaxies: the impact of different field seeding processes on galaxy formation

Author:

Garaldi Enrico1ORCID,Pakmor Rüdiger1ORCID,Springel Volker1ORCID

Affiliation:

1. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Garching b. München D-85741, Germany

Abstract

ABSTRACT We study the evolution of magnetic fields generated by charge segregation ahead of ionization fronts during the Epoch of Reionization, and their effects on galaxy formation. We compare this magnetic seeding process with the Biermann battery, injection from supernovae, and an imposed seed field at redshift z ≳ 127. Using a suite of self-consistent cosmological and zoom-in simulations based on the Auriga galaxy-formation model, we determine that all mechanisms produce galactic magnetic fields that equally affect galaxy formation, and are nearly indistinguishable at z ≲ 1.5. The former is compatible with observed values, while the latter is correlated with the gas metallicity below a seed-dependent redshift. Low-density gas and haloes below a seed-dependent mass threshold retain memory of the initial magnetic field. We produce synthetic Faraday rotation measure maps, showing that they have the potential to constrain the seeding process, although current observations are not yet sensitive enough. Our results imply that the ad-hoc assumption of a primordial seed field – widely used in galaxy formation simulations but of uncertain physical origin – can be replaced by physically motivated mechanisms for magnetogenesis with negligible impact on galactic properties. Additionally, magnetic fields generated ahead of ionization fronts appear very similar but weaker than those produced by the Biermann battery. Hence, in a realistic scenario where both mechanisms are active, the former will be negligible compared to the latter. Finally, our results highlight that the high-redshift Universe is a fruitful testing ground for our understanding of magnetic fields generation.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3