Abstract
Abstract
The origin of magnetic fields in the universe is an open problem. Seed magnetic fields possibly produced in early times may have survived up to the present day close to their original form, providing an untapped window to the primeval universe. The recent observations of high-energy neutrinos from the blazar TXS 0506+056 in association with an electromagnetic counterpart in a broad range of wavelengths can be used to probe intergalactic magnetic fields via the time delay between the neutrinos and gamma-rays as well as the time dependence of the gamma-ray fluxes. Using extensive three-dimensional Monte Carlo simulations, we constrain both the magnetic-field strength and, for the first time, its coherence length, considering six orders of magnitude for each.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献