3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: the magnetic field formalism

Author:

Dehman Clara12ORCID,Viganò Daniele123ORCID,Pons José A4,Rea Nanda12

Affiliation:

1. Institute of Space Sciences (ICE-CSIC) , Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona, Spain

2. Institut d’Estudis Espacials de Catalunya (IEEC) , Carrer Gran Capità 2-4, E-08034 Barcelona, Spain

3. Institute of Applied Computing & Community Code (IAC3), University of the Balearic Islands , E-07122 Palma, Spain

4. Departament de Física Aplicada, Universitat d’Alacant , E-03690 Alicante, Spain

Abstract

ABSTRACT The long-term evolution of the internal, strong magnetic fields of neutron stars needs a specific numerical modelling. The diversity of the observed phenomenology of neutron stars indicates that their magnetic topology is rather complex and 3D simulations are required, for example, to explain the observed bursting mechanisms and the creation of surface hotspots. We present MATINS, a new 3D numerical code for magnetothermal evolution in neutron stars, based on a finite-volume scheme that employs the cubed-sphere system of coordinates. In this first work, we focus on the crustal magnetic evolution, with the inclusion of realistic calculations for the neutron star structure, composition, and electrical conductivity assuming a simple temperature evolution profile. MATINS follows the evolution of strong fields (1014 − 1015 Gauss) with complex non-axisymmetric topologies and dominant Hall-drift terms, and it is suitable for handling sharp current sheets. After introducing the technical description of our approach and some tests, we present long-term simulations of the non-linear field evolution in realistic neutron star crusts. The results show how the non-axisymmetric Hall cascade redistributes the energy over different spatial scales. Following the exploration of different initial topologies, we conclude that during a few tens of kyr, an equipartition of energy between the poloidal and toroidal components happens at small-scales. However, the magnetic field keeps a strong memory of the initial large scales, which are much harder to be restructured or created. This indicates that large-scale configuration attained during the neutron star formation is crucial to determine the field topology at any evolution stage.

Funder

ERC

AEI

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neutron-star measurements in the multi-messenger Era;Astroparticle Physics;2024-02

2. Three-dimensional magnetothermal evolution of off-centred dipole magnetic field configurations in neutron stars;Monthly Notices of the Royal Astronomical Society;2023-08-16

3. Modelling force-free neutron star magnetospheres using physics-informed neural networks;Monthly Notices of the Royal Astronomical Society;2023-06-16

4. 3D evolution of neutron star magnetic fields from a realistic core-collapse turbulent topology;Monthly Notices of the Royal Astronomical Society;2023-06-14

5. Evolution of the angles between magnetic moments and rotation axes in radio pulsars;Monthly Notices of the Royal Astronomical Society;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3