Modelling force-free neutron star magnetospheres using physics-informed neural networks

Author:

Urbán Jorge F1,Stefanou Petros12,Dehman Clara34ORCID,Pons José A1

Affiliation:

1. Departament de Física Aplicada, Universitat d’Alacant , Ap. Correus 99, E-03080 Alacant, Spain

2. Departament d’Astronomia i Astrofísica, Universitat de Valéncia , Dr Moliner 50, E-46100, Burjassot, Valéncia, Spain

3. Institute of Space Sciences (ICE-CSIC), Campus UAB, Carrer de Can Magrans s/n , E-08193, Barcelona, Spain

4. Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran Capitá 2–4 , E-08034 Barcelona, Spain

Abstract

ABSTRACT Using physics-informed neural networks (PINNs) to solve a specific boundary value problem is becoming more popular as an alternative to traditional methods. However, depending on the specific problem, they could be computationally expensive and potentially less accurate. The functionality of PINNs for real-world physical problems can significantly improve if they become more flexible and adaptable. To address this, our work explores the idea of training a PINN for general boundary conditions and source terms expressed through a limited number of coefficients, introduced as additional inputs in the network. Although this process increases the dimensionality and is computationally costly, using the trained network to evaluate new general solutions is much faster. Our results indicate that PINN solutions are relatively accurate, reliable, and well behaved. We applied this idea to the astrophysical scenario of the magnetic field evolution in the interior of a neutron star connected to a force-free magnetosphere. Solving this problem through a global simulation in the entire domain is expensive due to the elliptic solver’s needs for the exterior solution. The computational cost with a PINN was more than an order of magnitude lower than the similar case solved with a finite difference scheme, arguably at the cost of accuracy. These results pave the way for the future extension to three-dimensional of this (or a similar) problem, where generalized boundary conditions are very costly to implement.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling solar coronal magnetic fields with physics-informed neural networks;Monthly Notices of the Royal Astronomical Society;2023-10-31

2. Solving the pulsar equation using physics-informed neural networks;Monthly Notices of the Royal Astronomical Society;2023-09-18

3. 3D evolution of neutron star magnetic fields from a realistic core-collapse turbulent topology;Monthly Notices of the Royal Astronomical Society;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3