3D evolution of neutron star magnetic fields from a realistic core-collapse turbulent topology

Author:

Dehman Clara12ORCID,Viganò Daniele123ORCID,Ascenzi Stefano12,Pons Jose A4,Rea Nanda12ORCID

Affiliation:

1. Institute of Space Sciences (ICE-CSIC) , Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona, Spain

2. Institut d’Estudis Espacials de Catalunya (IEEC) , Carrer Gran Capitá 2–4, E-08034 Barcelona, Spain

3. Institute of Applied Computing & Community Code (IAC3), University of the Balearic Islands , E-07122 Palma, Spain

4. Departament de Física Aplicada, Universitat d’Alacant , Ap. Correus 99, E-03080 Alacant, Spain

Abstract

ABSTRACT We perform the first 3D fully coupled magneto-thermal simulations of neutron stars (including the most realistic background structure and microphysical ingredients so far) applied to a very complex initial magnetic field topology in the crust, similar to what was recently obtained by proto-neutron stars dynamo simulations. In such configurations, most of the energy is stored in the toroidal field, while the dipolar component is a few per cent of the mean magnetic field. This initial feature is maintained during the long-term evolution (∼106 yr), since the Hall term favours a direct cascade (compensating for Ohmic dissipation) rather than a strong inverse cascade, for such an initial field topology. The surface dipolar component, responsible for the dominant electromagnetic spin-down torque, does not show any increase in time, when starting from this complex initial topology. This is in contrast to the timing properties of young pulsars and magnetars which point to higher values of the surface dipolar fields. A possibility is that the deep-seated magnetic field (currents in the core) is able to self-organize in large scales (during the collapse or in the early life of a neutron star). Alternatively, the dipolar field might be lower than is usually thought, with magnetosphere substantially contributing to the observed high spin-down, via e.g. strong winds or strong coronal magnetic loops, which can also provide a natural explanation to the tiny surface hotspots inferred from X-ray data.

Funder

ERC

Horizon 2020

Generalitat Valenciana

AEI

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3