3D code for MAgneto-Thermal evolution in Isolated Neutron Stars, MATINS: thermal evolution and light curves

Author:

Ascenzi Stefano123,Viganò Daniele124,Dehman Clara1256,Pons José A6,Rea Nanda12ORCID,Perna Rosalba78

Affiliation:

1. Institute of Space Sciences (ICE-CSIC) , Campus UAB, Carrer de Can Magrans s/n, Cerdanyola del Vallès (Barcelona) E-08193 , Spain

2. Institut d’Estudis Espacials de Catalunya (IEEC) , E-08034 Barcelona , Spain

3. Gran Sasso Science Institute (GSSI) , Viale F. Crispi 7, L’Aquila, I-67100 , Italy

4. Institute of Applied Computing & Community Code (IAC3), University of the Balearic Islands , Palma, E-07122 , Spain

5. Nordita, KTH Royal Institute of Technology and Stockholm University , Hannes Alfvéns väg 12, SE-10691 Stockholm , Sweden

6. Departament de Física Aplicada, Universitat d’Alacant , Ap. Correus 99, E-03080 Alacant , Spain

7. Department of Physics and Astronomy, Stony Brook University , Stony Brook, NY 11794-3800 , USA

8. Center for Computational Astrophysics, Flatiron Institute , New York, NY 10010 , USA

Abstract

ABSTRACT The thermal evolution of isolated neutron stars is a key element in unravelling their internal structure and composition and establishing evolutionary connections among different observational subclasses. Previous studies have predominantly focused on one-dimensional or axisymmetric two-dimensional models. In this study, we present the thermal evolution component of the novel three-dimensional magnetothermal code MATINS (MAgneto-Thermal evolution of Isolated Neutron Star). MATINS employs a finite volume scheme and integrates a realistic background structure, along with state-of-the-art microphysical calculations for the conductivities, neutrino emissivities, heat capacity, and superfluid gap models. This paper outlines the methodology employed to solve the thermal evolution equations in MATINS, along with the microphysical implementation that is essential for the thermal component. We test the accuracy of the code and present simulations with non-evolving magnetic fields of different configurations (all with electrical currents confined to the crust and a magnetic field that does not thread the core), to produce temperature maps of the neutron star surface. Additionally, for a specific magnetic field configuration, we show one fully coupled evolution of magnetic field and temperature. Subsequently, we use a ray-tracing code to link the neutron star surface temperature maps obtained by MATINS with the phase-resolved spectra and pulsed profiles that would be detected by distant observers. This study, together with our previous article focused on the magnetic formalism, presents in detail the most advanced evolutionary code for isolated neutron stars, with the aim of comparison with their timing properties, thermal luminosities and the associated X-ray light curves.

Funder

European Research Council

Generalitat Valenciana

AEI

NSF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3