Simulating disc formation in tidal disruption events

Author:

Bonnerot Clément1ORCID,Lu Wenbin1ORCID

Affiliation:

1. TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

ABSTRACT A star coming too close to a supermassive black hole gets disrupted by the tidal force of the compact object in a tidal disruption event, or TDE. Following this encounter, the debris evolves into an elongated stream, half of which coming back to pericentre. Relativistic apsidal precession then leads to a self-crossing shock that initiates the formation of an accretion disc. We perform the first simulation of this process considering a parabolic encounter with a supermassive black hole, which has so far eluded investigations for computational reasons. This numerical issue is alleviated by using as initial conditions the outflow launched by the self-crossing shock according the local simulation of Lu & Bonnerot (2020). We find that the gas leaving the intersection point experiences numerous secondary shocks that result in the rapid formation of a thick and marginally bound disc. The mass distribution features two overdensities identified as spiral shocks that drive slow gas inflow along the mid-plane. Inward motion primarily takes place along the funnels of the newly formed torus, from which a fraction of the matter can get accreted. Further out, the gas moves outward forming an extended envelope completely surrounding the accretion flow. Secondary shocks heat the debris at a rate of a few times $10^{44} \, \rm erg\, s^{-1}$ with a large fraction likely participating to the bolometric luminosity. These results pave the way towards a complete understanding of the early radiation from TDEs that progressively becomes accessible from observations.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3