Exploring the Origin of Stars on Bound and Unbound Orbits Causing Tidal Disruption Events

Author:

Zhong ShiyanORCID,Hayasaki KimitakeORCID,Li ShuoORCID,Berczik PeterORCID,Spurzem RainerORCID

Abstract

Abstract Tidal disruption events (TDEs) provide a clue to the properties of a central supermassive black hole (SMBH) and an accretion disk around it, and to the stellar density and velocity distributions in the nuclear star cluster surrounding the SMBH. Deviations of TDE light curves from the standard occurring at a parabolic encounter with the SMBH depend on whether the stellar orbit is hyperbolic or eccentric and the penetration factor (β, the tidal disruption radius to the orbital pericenter ratio). We study the orbital parameters of bound and unbound stars being tidally disrupted by comparison of direct N-body simulation data with an analytical model. Starting from the classical steady-state Fokker–Planck model of Cohn & Kulsrud, we develop an analytical model of the number density distribution of those stars as a function of orbital eccentricity (e) and β. To do so, fittings of the density and velocity distribution of the nuclear star cluster and of the energy distribution of tidally disrupted stars are required and obtained from N-body data. We confirm that most of the stars causing TDEs in a spherical nuclear star cluster originate from the full loss-cone region of phase space, derive analytical boundaries in eccentricity-β space, and find them confirmed by N-body data. Since our limiting eccentricities are much smaller than critical eccentricities for full accretion or the full escape of stellar debris, we conclude that those stars are only very marginally eccentric or hyperbolic, close to parabolic.

Funder

National Research Foundation of Korea

Chinese Academy of Sciences Strategic Priority Research Program

Sino-German Center DFG/NSFC

Volkswagen Foundation

National Academy of Sciences of Ukraine

National Research Foundation of Ukraine

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial tidal disruption events: the elixir of life;Monthly Notices of the Royal Astronomical Society;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3