Delayed and Fast-rising Radio Flares from an Optical and X-Ray-detected Tidal Disruption Event in the Center of a Dwarf Galaxy

Author:

Zhang FabaoORCID,Shu XinwenORCID,Yang Lei,Sun LumingORCID,Zhang Zhumao,Wang YiboORCID,Mou GuobinORCID,Zhang Xue-GuangORCID,Zhou Tianyao,Peng FangkunORCID

Abstract

Abstract AT 2018cqh is a unique tidal disruption event (TDE) discovered in a dwarf galaxy. Both the light-curve fitting and galaxy scaling relationships suggest a central black hole mass in the range of 5.9 < logM BH/M < 6.4. The r-band peak luminosity is ∼ 1043 erg s−1, making AT 2018cqh relatively faint among known optical TDEs. A delayed X-ray brightening was found around 590 days after the optical discovery but shows an unusually long time rising to peak over at least 558 days, which could be coming from delayed accretion of a newly forming debris disk. We report the discovery of delayed radio flares around 1105 days since its discovery, characterized by an initial steep rise of ≳175 days, a flattening lasting about 544 days, and a phase with another steep rise. The rapid rise in radio flux coupled with the slow decay in the X-ray emission points to a delayed launching of outflow, perhaps due to a transition in the accretion state. However, known accretion models can hardly explain the origins of the secondary radio flare that is rising even more rapidly in comparison with the initial one. If confirmed, AT 2018cqh would be a rare faint TDE in a dwarf galaxy exhibiting optical, X-ray, and radio flares. We call for continued multifrequency radio observations to monitor its spectral and temporal evolution, which may help to reveal new physical processes that are not included in standard TDE models.

Funder

Anhui Normal University

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Late-time Radio Flares in Tidal Disruption Events;The Astrophysical Journal;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3