Empirically motivated early feedback: momentum input by stellar feedback in galaxy simulations inferred through observations

Author:

Keller Benjamin W1ORCID,Kruijssen J M Diederik1ORCID,Chevance Mélanie1ORCID

Affiliation:

1. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg , Mönchofstraße 12-14, D-69120 Heidelberg, Germany

Abstract

ABSTRACT We present a novel method for including the effects of early (pre-supernova) feedback in simulations of galaxy evolution. Rather than building a model which attempts to match idealized, small-scale simulations or analytic approximations, we rely on direct observational measurements of the time-scales over which star-forming molecular clouds are disrupted by early feedback. We combine observations of the spatial de-correlation between molecular gas and star formation tracers on ∼100 pc scales with an analytic framework for the expansion of feedback fronts driven by arbitrary sources or mechanisms, and use these to constrain the time-scale and momentum injection rate by early feedback. This allows us to directly inform our model for feedback from these observations, sidestepping the complexity of multiple feedback mechanisms and their interaction below the resolution scale. We demonstrate that this new model has significant effects on the spatial clustering of star formation, the structure of the ISM, and the driving of outflows from the galactic plane, while preserving the overall regulation of the galaxy-integrated star formation rate. We find that this new feedback model results in galaxies that regulate star formation through the rapid disruption of star-forming clouds, rather than by highly efficient, global galactic outflows. We also demonstrate that these results are robust to stochasticity, degraded numerical resolution, changes in the star formation model parameters, and variations in the single free model parameter that is unconstrained by observations.

Funder

European Research Council

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3