Quantifying the energy balance between the turbulent ionised gas and young stars

Author:

Egorov Oleg V.ORCID,Kreckel KathrynORCID,Glover Simon C. O.ORCID,Groves BrentORCID,Belfiore FrancescoORCID,Emsellem EricORCID,Klessen Ralf S.ORCID,Leroy Adam K.,Meidt Sharon E.,Sarbadhicary Sumit K.,Schinnerer EvaORCID,Watkins Elizabeth J.,Whitmore Brad C.,Barnes Ashley T.,Congiu EnricoORCID,Dale Daniel A.ORCID,Grasha KathrynORCID,Larson Kirsten L.ORCID,Lee Janice C.,Méndez-Delgado J. EduardoORCID,Thilker David A.,Williams Thomas G.ORCID

Abstract

Context. Stellar feedback is a key contributor to the morphology and dynamics of the interstellar medium in star-forming galaxies. In particular, energy and momentum input from massive stars can drive the turbulent motions in the gas, but the dominance and efficiency of this process are unclear. The study of ionised superbubbles enables quantitative constraints to be placed on the energetics of stellar feedback. Aims. We directly compare the kinetic energy of expanding superbubbles and the turbulent motions in the interstellar medium with the mechanical energy deposited by massive stars in the form of winds and supernovae. With such a comparison, we aim to determine whether the stellar feedback is responsible for the observed turbulent motions and to quantify the fraction of mechanical energy retained in the superbubbles. Methods. We investigated the ionised gas morphology, excitation properties, and kinematics in 19 nearby star-forming galaxies from the PHANGS-MUSE survey. Based on the distribution of the flux and velocity dispersion in the Hα line, we selected 1484 regions of locally elevated velocity dispersion (σ(Hα) > 45 km s−1), including at least 171 expanding superbubbles. We analysed these regions and related their properties to those of the young stellar associations and star clusters identified in PHANGS-HST data. Results. We find a good correlation between the kinetic energy of the ionised gas and the total mechanical energy input from supernovae and stellar winds from the stellar associations. At the same time, the contribution of mechanical energy injected by the supernovae alone is not sufficient to explain the measured kinetic energy of the ionised gas, which implies that pre-supernova feedback in the form of radiation and thermal pressure as well as winds is necessary. We find that the gas kinetic energy decreases with metallicity for our sample covering Z = 0.5 − 1.0 Z, reflecting the lower impact of stellar feedback. For the sample of well-resolved superbubbles, we find that about 40% of the young stellar associations are preferentially located in their rims. We also find a slightly higher (by ∼15%) fraction of the youngest (< 3 Myr) stellar associations in the rims of the superbubbles than in the centres and the opposite trend for older associations, which implies possible propagation or triggering of star formation. Conclusions. Stellar feedback is the dominant source for powering the ionised gas in regions of locally (on a 50–500 pc scale) elevated velocity dispersion, with a typical coupling efficiency of 10 − 20%. Accounting for pre-supernovae feedback is required to set up the energy balance between gas and stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3